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Abstract— With the development of human-
computer interaction, tactile gesture recognition has
been widely used in our life. To solve the problem
of overfitting on the sample-limited tactile datasets,
we apply the Supervised Autoencoders (SAE) to
improve the generalization performance. Moreover,
based on the SAE, we propose the Multi-kernel-size
Convolutional Supervised Autoencoders (MCSAE) to
further improve the generalization performance on
the limited dataset, which provides models with more
structure of receptive fields and enhances the feature
extraction ability of SAE. In comparison with other
state-of-the-art (SOTA) models, the SAE we apply has
higher gesture recognition accuracy and MCSAE can
further improve the generalization performance of
SAE on the sample-limited publicly available dataset.

Index Terms— Gesture Recognition, Tactile Percep-
tion, Deep Learning, Autoencoders, Generalization Per-
formance.

I. INTRODUCTION

Gestures have been a fundamental mode of com-

munication since the far distant past. With the de-

velopment of human-computer interaction, gesture

recognition has been widely used in virtual reality

[1], medical care [2], industry [3], and other fields.

Gestures can not only bring players a real sense

of experience in video games but also improve the

quality of people’s lives and bring forth convenience

to the deaf. Compared with visual perception, gesture

recognition based on tactile perception can avoid

the interference of external factors. However, the

acquisition cost of tactile data is high, which requires

more time and effort to experiment [4]. Therefore,

it will be a challenge to improve the generalization

performance of recognition models on limited tactile

datasets [5].
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Currently, the algorithms applied to tactile ges-

ture recognition mainly include traditional machine

learning and deep learning methods. For the tradi-

tional machine learning method, Zhihao Zhou et al.

[2] achieved 98.63% accuracy using Support Vector

Machines (SVM) on a dataset containing 11 gestures

categories collected by yarn-based stretchable sensor

arrays. Shuo Jiang et al. [6] applied Linear Discrimi-

nant Analysis (LDA) to classify American Sign Lan-

guage (ASL) numbers 0-9 on a dataset collected by

resistive tactile sensors and showed 94.4% accuracy.

The deep learning algorithms have excellent fitting

performance. Subramanian Sundaram et al. [7] used

a Convolutional Neural Network (CNN) with resnet

blocks to classify 8 gestures on the collected sen-

sor array-based dataset with 89.4% accuracy. Xinan

Huang et al. [8] used a three-layer neural network

to classify 10 ASL gestures representing numbers 0-

10 with 98.5% accuracy on 20,000 samples collected

from a homemade resistive tactile sensor.

As mentioned, we have witnessed great progress

in the field of tactile gesture recognition by adopt-

ing deep neural networks. However, the recent ad-

vanced models still require accessing sufficiently

large datasets for training, which is often unfeasible in

the tactile perception field. When trained on sample-

limited datasets, the deep neural network is lack

of generalization capability [9]. To solve the above

problem, we apply a Supervised Autoencoders (SAE)

[10] to improve the generalization performance on

the tactile gesture recognition dataset, which uses

Autoencoders (AE) as regularization tasks. Moreover,

based on the SAE, we propose a Multi-kernel-size

Convolutional Supervised Autoencoders (MCSAE) to

further improve the generalization performance on

the limited dataset, which provides models with more

structure of receptive fields and enhances the feature

extraction ability of SAE. Contributions made in this

work can be summarized as follows:

1) We first apply the SAE with good general-
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Fig. 1. The architecture of AE. AE obtains the representation
of the hidden layer by encoding and decoding.

ization performance to solve the overfitting

problem of the tactile gesture recognition task.

2) We propose a novel MCSAE to further improve

the generalization performance by enhancing

the feature extraction ability of SAE.

3) We perform extensive comparison experiments

on a publicly available tactile gesture dataset

to prove SAE and MCSAE have better gener-

alization performance than other state-of-the-art

(SOTA) methods.

4) We conduct ablation experiments on publicly

available tactile gesture datasets to demonstrate

that MCSAE is effective for improving gen-

eralization performance on the sample-limited

dataset.

II. METHOD

All the methods use a training set (xi,yi), where

xi ∈ R
d is the i-th sample in the training set (N

samples) and yi ∈ R
m is an m-dimensional one-hot

vector, which corresponds to the class of the i-th
sample. In addition, d is the dimension of each

sample and m is the number of the classes.

A. Autoencoders (AE)

The AE is an unsupervised neural network widely

used in data dimensionality reduction [11]. AE ob-

tains the representation of the hidden layer by encod-

ing and decoding, as shown in Figure 1. The encoder

maps an unlabelled training sample xi to a non-linear

representation hi of the hidden layer:

hi = f (Wixi +bi) (1)

where hi ∈ R
h is representation of the hidden layer,

Wi ∈ R
h×d is a weight matrix, and bi ∈ R

h is a

Softmax classifier

Loss A:MSE loss

Loss B:Cross-entropy loss

Fig. 2. The architecture of SAE. SAE is an approach to using AE
as unsupervised auxiliary tasks. In addition, we train AE jointly
with the classifier.

bias vector for the encoding process. In addition, h
is the number of hidden neurons. In the decoder,

the representation hi is reconstructed to the original

dimention d as follows:

x̃i = f
(
W̃ihi + b̃i

)
(2)

where x̃i ∈ R
d is the reconstructed data of the i-th

sample, W̃i ∈ R
d×h is a weights matrix, and bi ∈ R

d

is a bias vector for the decoding process. In addition,

f is an activation function of the hidden layer, e.g.,

sigmoid function:

f (x) =
1

1+ exp(−x)
. (3)

Then, the representation of the hidden layer is ob-

tained by minimizing the following reconstruction

error loss function:

L =
1

N

N

∑
i=1

‖x̃i −xi‖2
2 . (4)

B. Supervised Autoencoders (SAE)

The traditional AE for supervised learning trains

the representation learning process and the super-

vised learning process separately. However, during

the training process, we cannot guarantee that the fea-

tures learned from the representation learning method

AE can be well applied to the classifier. SAE is an

approach to using AE as unsupervised auxiliary tasks

to improve generalization performance. Le et al.[10]

theoretically and empirically showed that the addi-

tion of reconstruction error improves generalization
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Fig. 3. The architecture of MCSAE. Three channels are used to extract useful representation by using CAE with different kernel
sizes as auxiliary tasks. In adddition, we train CAE jointly with the classifier.

performance. The architecture of SAE is shown in

Figure 2. For an SAE based on AE, the classifier

maps the representation of the deepest hidden layer

to an m-dimensional one-hot vector wa,i as follows:

wa,i = S
(
Wp

i hi +bp
i

)
(5)

where Wp
i ∈ R

m×h is a weight matrix and bp
i ∈ R

m

is a bias vector to predict label, and S is a softmax

function to map the vector to a one-hot vector. After

that, the SAE uses an auxiliary task to improve gen-

eralization performance by adding the reconstruction

error loss to the classification loss. Let CE(·) be the

cross-entropy loss for classification and MSE(·) be

the mean square error loss for the reconstruction error.

The total loss function of the SAE is as follows:

L =
1

N

N

∑
i=1

(
CE

(
wa,i,wb,i

)
+αr MSE(x̃i,xi)

)

=
1

N

N

∑
i=1

(
−

m

∑
g=1

(
wg

b,i log
(

wg
a,i

))
+αr ‖x̃i −xi‖2

2

)
(6)

where wg
a,i is the predicted probability of the g-th

category, wg
b,i is the ground truth probability distribu-

tion of the g-th category, and αr is the weight of the

reconstruction loss.

C. Multi-kernel-size Convolutional Supervised Au-
toencoders (MCSAE)

Like CNN, SAE can also replace fully connected

layers with convolutional layers to extract spatial in-

formation on images. Convolution shows its powerful

feature extraction and integration ability in processing

data with a 2D array structure. The extracted high-

level features will be different by the size of the

receptive field. Inspired by the inductive bias concept

of SAE and the working mechanism of convolu-

tion, we propose an MCSAE to use convolutions

of different kernel sizes for complementation, which

provides model more structures of receptive fields

and enhances the feature extraction ability of SAE.

The MCSAE includes the main task CNN and the

auxiliary task CAE as shown in Figure 3. The con-

volutional encoder maps the training data xi with one

channel to a non-linear hidden representation hk
j,i with

k feature maps:

hk
j,i = pool

(
f
(

Wk
j,i �xi +bk

j,i

))
(7)

where Wk
j,i is the k-th convolutional kernel and each

convolutional kernel is matched with a bias bk
j,i.

In addition, pool(·) is a max-pooling layer, � is

a convolutional operation, and f (·) is the sigmoid

function. Then, the convolutional decoder maps the

hidden representation hk
j,i to a reconstruction data:

x̃ j,i = f
(

W̃ j,i �up
(

hk
j,i

)
+ b̃ j,i

)
(8)

where up(·) is an up-sampling layer that uses the

deconvolution operation to get a feature map with

the same size as the input data and W̃ j,i is a single

convolutional kernel that reconstruct the input data.
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The convolution kernel sizes we choose are 1, 3,

and 5. Setting the sizes of the convolution kernel to

an odd number has two advantages. One is to ensure

that the anchor point is just in the center, avoiding

the offset of the position information. The other is

to ensure that the two sides of the image are still

symmetrical during padding. The convolution kernel

of size 1 retains the most original data information.

The convolution kernels of sizes 3 and 5 can obtain

useful information about the smaller and larger re-

ceptive fields and obtain different feature maps.

The main task CNN flattens the hidden layer

feature maps hk
j,i obtained from different receptive

fields. Then, the features are concatenated into a

one-dimensional vector as a multi-kernel-size fusion

feature. The kernel-fused features Hi is given by:

Hi =
[

flatten
(

hk
1,i

)
; flatten

(
hk

2,i

)
; flatten

(
hk

3,i

)]
(9)

where flatten (·) is the flatten operation and

hk
j,i ( j = 1,2,3) denotes the feature maps obtained

from different receptive fields. Next, the concate-

nated features are put into two fully connected layers

and use feature weighting to reduce the number of

features to eliminate redundant features. Finally, the

fused features are put into the softmax classifier:

wa,i = S
(
Wp

i Hi +bp
i

)
(10)

where S(·) is a softmax function to map the vector

to predicted probability distribution wa,i. Let CE(·)
be the cross-entropy loss for the classification and

MSE(·) be the mean square error loss for the recon-

struction error. The total loss function of the MCSAE

is as follows:

L =
1

N

N

∑
i=1

(
CE

(
wa,i,wb,i

)
+

3

∑
j=1

αr, j MSE(x̃ j,i,xi,)

)

=
N

∑
i=1

(
−

m

∑
g=1

(
wg

b,i log
(

wg
a,i

))
+

3

∑
j=1

αr, j
∥∥x̃ j,i −xi

∥∥2

2

)
(11)

where αr, j is weight of the reconstruction loss of

different kernels j.

III. EXPERIMENTS

A. STAG Dataset

The tactile data used in this paper was collected

by Subramanian et al. [7] as shown in Figure 4. They

used a scalable tactile glove (STAG) covers the whole

hand with 548 sensors to obtain a 32 * 32 tactile

array. They chose eight of the most representative

Fig. 4. STAG dataset. Eight different gestures and their
corresponding sensor arrays.

hand positions, including seven different hand posi-

tions and one neutral hand pose as a reference. The

total dataset includes 4336 frames.

B. Experimental Setups

In all experiments, we use the same dataset division

method of 3080 training frames and 1256 distinct

testing frames as the setting of Subramanian et al.

1) Comparison With Related Methods: This

experiment aims to compare the SAE with convo-

lution and the proposed MCSAE with the existing

SOTA machine learning and deep learning methods in

the field of tactile gesture recognition on the sample-

limited publicly available dataset. A brief introduction

of the compared methods is as follows:

SVM: SVM is a supervised learning model, which

is one of the most robust prediction methods for

classification tasks on the tactile dataset [12], [13].

We use the multi-class SVM method with a standard

radial basis function (RBF) to classify eight different

gestures on the STAG dataset, which has a better

performance than SVM with other kernel functions

based on our pre-experiment.

MLP: MLP is a deep learning model. We use

a three-hidden-layer MLP to classify eight different

gestures on the STAG dataset, which has a better per-

formance than MLP with other hidden layer numbers

based on our pre-experiment.

CNN: CNN is a deep learning model that can

obtain image spatial information. We use a three-

hidden-layer CNN to classify eight different gestures

on the STAG dataset, which has a better performance

than CNN with other hidden layer numbers based on

our pre-experiment.
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STAG: STAG was proposed by Subramanian et

al. on the STAG dataset to classify eight different

gesture. The architecture includes a convolutional

layer, a batch normalization (bn) layer, a max-pooling

layer, two resnet blocks, and a drop out layer.

2) Ablation Experiments of MCSAE: This exper-

iment aims to analyze the effects of the multi-kernel

size. Besides the proposed MCSAE, we implement

and compare some other architectures with single or

multiple kernel sizes:

Single size kernel: SAE with kernel size 1 (SAE-

1), SAE with kernel size 3 (SAE-3), and SAE with

kernel size 5 (SAE-5)

Two size kernel: MCSAE with kernel sizes 1 and

3 (MCSAE-13), MCSAE with kernel sizes 1 and 5

(MCSAE-15), and MCSAE with kernel sizes 3 and

5 (MCSAE-35)

A trial-error method is applied to set up these key

parameters of all the methods. In this paper, all deep

learning models are trained for 20 epochs, with a

batch size of 32 samples. The Adam optimizer with a

learning rate of 0.001 is applied to minimize the loss

function. We use average of 10 runs as the final result.

In addition, we normalize each feature between 0 and

1 through Min-Max scaling.

The experiment results are evaluated in the metric

of accuracy, which is an evaluation metric of gesture

recognition performance. The accuracy is defined as:

Acc =
Z
N
×100% (12)

where N denotes the total numbers of truth classes

and Z denotes the total numbers of correctly identified

classes. Moreover, we present the accuracy of the

training and test set and further compare, which

can evaluate the generalization performance of our

proposed method.

C. Comparison With Related Methods

Table I shows the test and training accuracy of four

compared methods, SAE and the proposed MCSAE

on the STAG dataset. The results show that MCSAE

achieves the highest test accuracy (94.43%) compared

with other SOTA tactile gesture recognition methods

on the sample-limited dataset. In addition, we make

the following observations:

1) All methods achieve approximately 100% ac-

curacy on the training set, which means that

higher accuracy on the test set indicates better

generalization performance of the model.

2) Compared with the SVM, other methods

achieve higher accuracy on the test set. It

TABLE I

TEST AND TRAINING ACCURACY OF FOUR COMPARED

METHODS (SVM, MLP, CNN, AND STAG), SAE, AND THE

PROPOSED MCSAE ON THE STAG DATASET. THE BEST

PERFORMANCE OF THE TEST ACCURACY IS MARKED IN BOLD.

Method
Average Accuracy (%)

Test Training

SVM 87.10 100.00

MLP 87.18 99.84

CNN 92.27 100.00

STAG 89.40 100.00

SAE 93.47 100.00

MCSAE 94.43 100.00

TABLE II

TEST AND TRAINING ACCURACY OF THE PROPOSED MCSAE

AND RELATED ABLATION MODELS ON THE STAG DATASET.

THE BEST PERFORMANCE OF THE TEST ACCURACY IS

MARKED IN BOLD.

Method
Average Accuracy (%)

Test Training

SAE-1 85.19 98.44

SAE-3 93.31 100.00

SAE-5 93.47 100.00

MCSAE-13 93.55 99.55

MCSAE-15 93.71 100.00

MCSAE-35 93.79 100.00

MCSAE 94.43 100.00

indicates that the deep learning architecture

has superior performance on the STAG dataset

than the traditional shallow machine learning

methods.

3) Compared with the MLP, CNN, and STAG,

the SAE achieves higher accuracy on the test

set. It appears that the SAE architecture that

uses AE as a regularization task has better gen-

eralization performance on the sample-limited

STAG dataset than other deep learning methods

without regularization tasks.

4) Compared with the SAE, the proposed MC-

SAE achieves higher accuracy on the test set.

Therefore, the proposed regularization strategy

for input layer reconstruction based on multi-

kernel-size convolution feature extraction can

effectively improve the generalization perfor-

mance.

D. Ablation Experiments of MCSAE

Table II shows the test and training accuracy of

MCSAE with different kernel sizes, which aims to

analyze the effects of multi-kernel size. The results
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show that MCSAE achieves the highest test accuracy

compared to other ablation models on the sample-

limited dataset. In addition, we make the following

observations:

1) The regularization strategy using three kernels

on different channels for feature extraction has

the highest performance on the test set for

tactile gesture recognition. SAE with a single-

kernel size has relatively poor recognition per-

formance. Therefore, increasing certain con-

volution kernel numbers on different channels

is beneficial to improving the generalization

performance on the sample-limited dataset.

2) When the kernel size is 1, the convolutional

layer will not be able to consider the spa-

tial information of the tactile data image, and

the maximum pooling downsampling operation

will lose part of the information, resulting in

low accuracy. However, when we use the AE

with a kernel size of 1 as an auxiliary task

to expand the data dimension and supplement

the information required for recognition, the

model has a better recognition performance

than a single kernel size, which can effectively

improve the generalization performance of the

model.

IV. CONCLUSION

In this paper, we first apply the SAE to improve

generalization performance for tactile gesture recog-

nition tasks. Moreover, we propose a novel MCSAE

to further improve the generalization performance by

enhancing the feature extraction ability of SAE. After

that, we compare the currently SOTA models with

SAE and MCSAE on the sample-limited publicly

available dataset. The experimental results demon-

strate that the SAE we apply has better generalization

performance than compared methods, and MCSAE

achieves higher accuracy on test set than SAE, which

indicates the excellent generalization performance of

the MCSAE we propose. In addition, we also conduct

ablation tasks to show that MCSAE is effective

for improving generalization performance, which has

higher accuracy on the test set than other ablation

models. Moving forward, we will further explore the

proposed methods on other sample-limited datasets.
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